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Abstract

Accumulating evidence suggests that hydrogen peroxide (H2O2) plays an important role in cancer development.
Experimental data have shown that cancer cells produce high amounts of H2O2. An increase in the cellular levels of
H2O2 has been linked to several key alterations in cancer, including DNA alterations, cell proliferation, apoptosis
resistance, metastasis, angiogenesis and hypoxia-inducible factor 1 (HIF-1) activation. It has also been observed that
the malignant phenotype of cancer cells can be reversed just by decreasing the cellular levels of H2O2. On the other hand,
there is evidence that H2O2 can induce apoptosis in cancer cells selectively and that the activity of several anticancer drugs
commonly used in the clinic is mediated, at least in part, by H2O2. The present report discusses that the high levels of H2O2

commonly observed in cancer cells may be essential for cancer development; these high levels, however, seem almost
incompatible with cell survival and may make cancer cells more susceptible to H2O2-induced cell death than normal cells.
An understanding of this dual role of H2O2 in cancer might be exploited for the development of cancer chemopreventive
and therapeutic strategies.
Ó 2006 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Reactive oxygen species (ROS) are generated by
all aerobic organisms and their production seems
to be needed for signal-transduction pathways that
regulate multiple physiological processes. Excessive
amounts of ROS, however, can start toxic and lethal
chain reactions, which oxidize and disable structures
that are required for cellular integrity and survival.
ROS are generated in multiple compartments and

by multiple enzymes within the cell. Important con-
tributions include proteins within the plasma mem-
brane, such as the growing family of NADPH
oxidases; lipid metabolism within the peroxisomes;
as well as the activity of various cytosolic enzymes
such as cyclooxygenases. Although all these sources
contribute to the overall ROS production, the vast
majority of cellular ROS can be traced back to the
mitochondria [1–4].

Most of the energy that our cells need to live
depends on a mitochondrial process that requires
oxygen (O2). In this process, called oxidative
phosphorylation, ATP generation is coupled with
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a reaction in which O2 is reduced to H2O. Under
certain conditions, O2 can also be reduced to H2O
via the ROS superoxide anion (O�ÿ

2 ) and hydrogen
peroxide (H2O2) [2,5]. It is recognized that the cellu-
lar production of O�ÿ

2 and H2O2 favors the forma-
tion of other reactive oxygen and nitrogen species
– such as hydroxyl radical (OH�) and peroxynitrite
(ONOOÿ) – and that an excessive production of
these species causes oxidative stress and may play
an important role in carcinogenesis [6]. It is not
clear, however, which species is directly responsible
for each of the biological activities in which ROS
have been implicated. For instance, several studies
have demonstrated that the overexpression of the
enzymes superoxide dismutases (SOD) in tumor
cells can reduce tumor cell growth, metastasis and
other malignant features of cancer cells [7–12]. Since
these enzymes catalyze the conversion of O�ÿ

2 to
H2O2, the anticancer effects induced by SOD
overexpression may be mediated by a decrease in
the cellular levels of O�ÿ

2 or by an increase in the
cellular concentrations of H2O2. Experimental data
suggest that the anticancer effects produced by
overexpression of manganese SOD can be reverted
by overexpression of two enzymes involved in
H2O2 catabolism, catalase and glutathione peroxi-
dase; this supports that the anticancer effects
induced by SOD overexpression are mediated by
an increase in H2O2 [13,14].

The present report discusses evidence that sug-
gests that an increase in the cellular levels of H2O2

may play, directly or indirectly, a key role in malig-
nant transformation, but can also sensitize cancer
cells to H2O2-induced cell death. An understanding
of this dual role of H2O2 in cancer might be exploit-
ed for the development of cancer chemopreventive
and therapeutic strategies.

2. Key role of hydrogen peroxide in carcinogenesis

Many researchers consider that cancer is a genetic
disease caused by the acquisition of multiple muta-
tions in genes that control cell proliferation, cell
death and genomic instability [15]. This hypothesis
– called the somatic mutation theory of cancer –
has been the prevalent paradigm to explain the
process of carcinogenesis in the last several decades.
There is growing experimental evidence, however,
that contradicts or cannot be explained by this
hypothesis, and other theories are being developed
or revisited [16–23]. It is currently accepted – even
by those who challenge the somatic mutation theory

of cancer – that cells must develop several acquired
capabilities in order to become a malignant cancer:
increased cell proliferation (caused, in part, by
resistance to growth inhibition and independence
from mitogenic stimulation), apoptosis resistance,
cellular immortalization, increased angiogenesis
and invasion/metastasis. Besides, it is considered
that genetic instability is a key event that enables
the acquisition of these capabilities [24,25].

Accumulating experimental data suggest that an
increase in the cellular concentrations of H2O2 can
explain all these hallmarks of cancer. It is known
that H2O2 is associated with DNA damage, muta-
tions and genetic instability [26–31]; H2O2-induced
DNA damage seems to be mediated by OH� gener-
ated from H2O2 by the Fenton reaction [26,30,31].
Several studies have also demonstrated that H2O2

can induce cell proliferation [2,32,33], apoptosis
resistance [34,35], increased angiogenesis [36,37]
and invasion and metastasis [33,38,39]. Indeed,
these studies showed that an increase in the levels
of H2O2-detoxifying enzymes could reduce cell pro-
liferation, promote apoptosis, and inhibit invasion,
metastasis and angiogenesis. The activation of
hypoxia-inducible factor 1 (HIF-1) by H2O2 can
contribute to explain these hallmarks of cancer.
There is evidence that the most important onco-
genes and tumor-suppressor gene pathways may
culminate in HIF-1 activation [15] and that HIF-1
activation plays an important role in apoptosis
resistance, invasion/metastasis, angiogenesis and
immortalization [5,40–43]. It is not surprising,
therefore, that HIF-1 overexpression is observed
in many human cancers and has been associated
with increased patient mortality [40,41,44]. Interest-
ingly, recent research has established that an
increase in the cellular concentrations of H2O2 can
activate HIF-1, and that overexpression of the
H2O2-detoxifying enzyme catalase prevents the
activation of HIF-1 induced by different stimuli
[5,45–49].

The key role of H2O2 in carcinogenesis is sup-
ported by experimental data that have shown that
cancer cells commonly have increased levels of
H2O2 [2,50–52]. For instance, Szatrowski and
Nathan reported that several tumor cell lines, repre-
senting a variety of tissue types, constitutively pro-
duced large amounts of H2O2. They observed that
the cumulative amount of H2O2 produced after
4 h by these tumor cells was comparable to the
amount of H2O2 produced by similar numbers of
phorbol ester-triggered neutrophils [50]. It has also
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been demonstrated that H2O2 can induce malignant
transformation [53–56] and that the expression of
the H2O2-detoxifying enzymes catalase or glutathi-
one peroxidase in cancer cells can reverse their malig-
nant phenotype [55,57,58]. For instance, expression of
the ROS generation system Nox1 in normal
NIH3T3 fibroblasts resulted in cells with malignant
characteristics that produced tumors in athymic
mice. These transformed cells showed a 10-fold
increase in H2O2 levels. When human catalase was
expressed in these transformed cells, H2O2 concen-
tration decreased, and the cells reverted to a normal
appearance, the growth rate normalized, and cells
no longer produced tumors in athymic mice [55].

In short, it seems that cancer cells produce high
amounts of H2O2, and high cellular levels of this
ROS have been associated, directly or indirectly,
with all the hallmarks of cancer. Furthermore,
H2O2 can produce cell malignant transformation,
and expression of H2O2-detoxifying enzymes can
reverse the malignant phenotype of cancer cells.
This suggests that H2O2 plays an essential role in
carcinogenesis.

3. Selective killing of cancer cells by hydrogen

peroxide

As discussed above, there is evidence that H2O2

may have an important function in cancer develop-
ment. However, there is also compelling evidence
that have shown that increasing the cellular levels
ofH2O2maybe an efficientway of killing cancer cells.
Fig. 1 represents that different concentrations of
H2O2 can produce different cellular effects; this may
contribute to explain apparently controversial stud-
ies that have shown, for instance, that H2O2 can both
produce apoptosis resistance [35] and be an efficient
inductor of apoptosis in cancer cells [59,60].

Numerous reports have demonstrated that H2O2

can induce cell death in cancer cells. It has been

observed that a significant increase in the intracellu-
lar H2O2 production and downstream acidification
provides an environment conducive for apoptotic
cell death in tumor cells [59–61]. Recent data
support that increasing the cellular levels of H2O2

by using H2O2-generating drugs may be an efficient
way of killing cancer cells. Thus, the anticancer
effect of various chemotherapeutic agents currently
used in the clinic (e.g., paclitaxel, cisplatin, arsenic
trioxide, etoposide, doxorubicin) is mediated, at
least in part, by an increase in the cellular levels of
H2O2 [62–72].

There is experimental evidence that cancer cells
are more susceptible to H2O2-induced cell death
than normal cells [73–76]. Using several cancer
and normal cell lines, Chen et al. observed that
pharmacologic ascorbic acid concentrations
selectively killed cancer cells; this effect was
mediated by H2O2. They showed, for instance, that
a concentration of 50 lM of H2O2 induced more
percentage of cell death in Burkitt’s lymphoma cells
than 250 lM in normal lymphocytes and normal
monocytes [74].

It is not clear why specific concentrations of
H2O2 can kill cancer cells selectively. It has been
proposed that, in normal cells, ROS are at low
levels, originate from NADPH oxidase and the con-
centration of H2O2 is regulated by the glutathione
system. By contrast, in tumor cells, high levels of
ROS close to the threshold of cytotoxicity are
produced through the mitochondrial respiratory
chain, and H2O2 concentration is controlled by cat-
alase [77]. On the other hand, Chen et al. found no
correlation between H2O2-mediated selective cell
death of cancer cells and intracellular glutathione
concentrations, catalase activity, or glutathione

Fig. 1. Different cellular effects by different cellular levels of

H2O2. Low levels of H2O2 have a physiological role in cell

signaling. A constitutive increase in the cellular levels of H2O2 has

been associated with the carcinogenesis process. Higher levels of

H2O2 can produce cell death.

Fig. 2. Selective killing of cancer cells by H2O2. There is evidence

that cancer cells have higher levels of H2O2 than normal cells

[2,50–52] (represented in black) and that there is a threshold of

H2O2 above which cells cannot survive. This might explain why

specific concentrations of H2O2 (represented in striped black) can

produce selective death of cancer cells.
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peroxidase activity [74]. A possible explanation to
the high susceptibility of cancer cells to H2O2 is rep-
resented in Fig. 2.

4. Relevance to cancer therapy and cancer

chemoprevention

The possible use of H2O2 in cancer therapy has
been controversial over the years. In 1957, it was
reported that 50–60% of rats implanted with the
Walker 256 adenocarcinoma were cured by simply
replacing their drinking water with dilute solutions
of H2O2 [78]. One year later, however, no anticancer
effect was found when H2O2 was given to rats using
comparable experimental conditions [79]. In 1981, it
was reported that the use of an H2O2-generating
system could deliver H2O2 to sites of malignancy
and produce anticancer effects in mice, with little
toxicity to the host [80]. Because this and other
reports suggested that H2O2 might be useful in can-
cer therapy, many individuals looked for therapies
with H2O2 for cancer management. In 1993, the
American Cancer Society studied the available liter-
ature and found no evidence that treatment with
H2O2 was safe or resulted in objective benefit in
the treatment of cancer [81].

It is now accepted that the direct administration
of H2O2 to cancer patients is not an appropriate
therapeutic strategy [81]. However, as discussed
before, there is now convincing evidence that sup-
ports that increasing the cellular levels of H2O2 by
using H2O2-generating systems may be an efficient
way of killing cancer cells. For instance, recent data
have shown that the generation of H2O2 by using
high-dose intravenous vitamin C therapy may be
useful in the treatment of cancer [74,82]. It has also
been proposed that the identification of compounds
that trigger a significant increase in intracellular
H2O2 and their use in conjunction with chemother-
apy agents could be an attractive strategy to
enhance the sensitivity of tumor cells to drug thera-
py [83]. Therefore, there is evidence that supports
that increasing the cellular levels of H2O2 by using
H2O2-generating systems may be a key strategy
for the development of clinically useful anticancer
strategies.

Cancer therapy has not managed to decrease can-
cer mortality in the last three decades; this suggests
that we need new strategies to control a disease that
kills over 6 million people worldwide every year
[84,85]. It is accepted that cancer chemoprevention
– the use of chemicals to prevent, stop or reverse

the process of carcinogenesis – is an essential
approach to controlling cancer, yet the clinical use-
fulness of this strategy is very limited [86,87]. Suc-
cessful implementation of cancer chemoprevention
depends on a mechanistic understanding of the
carcinogenesis process [86]. Our knowledge about
this process is still limited and may therefore be
preventing cancer chemoprevention from becoming
a widely used anticancer tool. The present report
discusses that an excessive cellular production of
H2O2 may be a key event in cancer development;
cancer chemoprevention may therefore be achieved
by using chemicals to prevent or reduce excessive
cellular levels of this oxidant.

It is known that most cancer chemopreventive
agents have antioxidant properties. It is important
to note, however, that many of these agents become
prooxidants at relatively high concentrations. This
means that these agents may reduce or increase
the cellular levels of H2O2 depending on the concen-
tration at which they are used, and suggests that
different concentrations of these agents may produce
chemopreventive or chemotherapeutic effects.
Indeed, it is recognized that antioxidant/prooxidant
agents, such as curcumin, epigallocatechin gallate,
beta-carotene, sulforaphane, capsaicin or vitamin
C, are potential cancer chemopreventive and
chemotherapeutic agents [88–95]. What is not
acknowledged, however, is that these agents can also
produce carcinogenic effects. Fig. 3 represents that
an antioxidant/prooxidant agent can produce

Fig. 3. Antioxidant/prooxidant drugs as potential cancer che-

mopreventive, carcinogenic and chemotherapeutic agents. At low

concentrations, these drugs may act as cancer chemopreventive

agents by reducing or keeping the cellular levels of H2O2 within

the physiological levels. At higher concentrations, these drugs

may increase the levels of H2O2 and produce carcinogenic effects.

At concentrations that result in levels of H2O2 that cannot be

counterbalanced by the cellular antioxidant systems, these drugs

can produce cell death and may act as chemotherapeutic agents.
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chemopreventive, carcinogenic and chemotherapeu-
tic effects mainly depending on its concentration.
This is in accordance with experimental data that
suggest that the antioxidant/prooxidant agent vita-
min C produces cancer chemopreventive, carcino-
genic and chemotherapeutic effects [74,82,96–98].

The prooxidant effect of cancer chemopreventive
agents might increase the cellular H2O2 levels and
produce carcinogenic effects in people receiving these
agents. In three major cancer chemoprevention clin-
ical trials, high doses of beta-carotene – an antioxi-
dant chemically related to vitamin A – were given
to people in an attempt to prevent lung cancer.
Two studies found beta-carotene supplements to be
associated with a higher risk of lung cancer in ciga-
rette smokers, and a third found neither benefit
nor harm from beta-carotene supplements [99,100].
The model proposed in Fig. 3 may contribute to
explain these disappointing results, as these trials
used high concentrations of beta-carotene and this
agent has known antioxidant/prooxidant properties
[89,90]. Current cancer chemopreventive clinical tri-
als are testing antioxidant/prooxidant agents (e.g.,
vitamin E) at concentrations that may also produce
carcinogenic effects [101–103]. It is the author opin-
ion that the use of relatively high doses of antioxi-
dant/prooxidant agents in cancer chemoprevention
may camouflage their possible efficiency and also
produce carcinogenic effects.

It has been observed that some antioxidants
such as N-acetylcysteine (NAC) can decrease the
cellular levels of H2O2 and yet increase the prolif-
eration of several cancer cell lines [62,83]. One
possible explanation is that, in these cancer cells,
the levels of H2O2 may be above the toxic thresh-
old and may therefore induce antiproliferative
effects; the reduction of these H2O2 levels by anti-
oxidants would stimulate cell proliferation. These
observations might explain the detrimental effect
of NAC in patients with head and neck cancer
or lung cancer supplemented with this antioxidant
[104].

5. Conclusions

Evidence suggests that an increase in the cellular
levels of H2O2 may be an important event in cancer
development. Cancer chemoprevention might
therefore be achieved by using any chemical capable
of reducing or preventing excessive cellular levels of
H2O2. On the other hand, it seems that the high
levels of H2O2 commonly observed in cancer cells

are almost incompatible with cell survival and make
these cells more susceptible to H2O2-induced cell
death than normal cells. Any chemical or strategy
capable of increasing the cellular levels of H2O2 suf-
ficiently may therefore produce selective killing of
cancer cells and be therapeutically useful. Finally,
it is important to note that the use of a drug with
antioxidant/prooxidant properties can result in a
decrease or increase in the cellular levels of H2O2

mainly depending on the concentration at which
this drug reaches the cell. This factor should be con-
sidered carefully, as it can determine that the drug
produces cancer chemopreventive, chemotherapeu-
tic or carcinogenic effects.
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